Jumat, 18 Januari 2013

Logaritma

Logaritma adalah operasi matematika yang merupakan kebalikan dari eksponen atau pemangkatan.
Rumus dasar logaritma:
bc= a ditulis sebagai blog a = c (b disebut basis)
Beberapa orang menuliskan blog a = c sebagai logba = c.

Rumus

Logaritma

ac = b → ª log b = c
a = basis
b = bilangan yang dilogaritma
c = hasil logaritma
Sifat-sifat Logaritma
ª log a = 1
ª log 1 = 0
ª log aⁿ = n
ª log bⁿ = n • ª log b
ª log b • c = ª log b + ª log c
ª log b/c = ª log b – ª log c
ªˆⁿ log b m = m/n • ª log b
ª log b = 1 ÷ b log a
ª log b • b log c • c log d = ª log d
ª log b = c log b ÷ c log a

Penghitungan yang lebih mudah

Logaritma memindahkan fokus penghitungan dari bilangan normal ke pangkat-pangkat (eksponen). Bila basis logaritmanya sama, maka beberapa jenis penghitungan menjadi lebih mudah menggunakan logaritma::
Penghitungan dengan angka Penghitungan dengan eksponen Identitas Logaritma
 \!\, a b  \!\, A + B  \!\, \log(a b) = \log(a) + \log(b)
 \!\frac{a}{b}  \!\, A - B  \!\, \log(\frac{a}{b}) = \log(a) - \log(b)
 \!\, a ^ b  \!\, A b  \!\, \log(a ^ b) = b \log(a)
 \!\, \sqrt[b]{a}  \!\, \frac{A}{b}  \!\, \log(\sqrt[b]{a}) = \frac{\log(a)}{b}
Sifat-sifat di atas membuat penghitungan dengan eksponen menjadi lebih mudah, dan penggunaan logaritma sangat penting, terutama sebelum tersedianya kalkulator sebagai hasil perkembangan teknologi modern.
Untuk mengkali dua angka, yang diperlukan adalah melihat logaritma masing-masing angka dalam tabel, menjumlahkannya, dan melihat antilog jumlah tersebut dalam tabel. Untuk mengitung pangkat atau akar dari sebuah bilangan, logaritma bilangan tersebut dapat dilihat di tabel, lalu hanya mengkali atau membagi dengan radix pangkat atau akar tersebut.

Kalkulus

Turunan fungsi logaritma adalah
\frac{d}{dx} \log_b(x) = \frac{1}{x \ln(b)} = \frac{\log_b(e)}{x}
dimana ln adalah logaritma natural, yaitu logaritma yang berbasis e. Jika b = e, maka rumus di atas dapat disederhanakan menjadi
\frac{d}{dx} \ln(x) = \frac{1}{x}.
Integral fungsi logaritma adalah
\int \log_b(x) \,dx = x \log_b(x) - \frac{x}{\ln(b)} + C = x \log_b \left(\frac{x}{e}\right) + C
Integral logaritma berbasis e adalah
\int \ln(x) \, dx= x \ln(x) - x + C\,
Sebagai contoh carilah turunan
\log(x)

Penghitungan nilai logaritma

Nilai logaritma dengan basis b dapat dihitung dengan rumus dibawah ini.
 \log_b(x) = \frac{\log_e(x)}{\log_e(b)} \qquad \mbox{ atau } \qquad \log_b(x) = \frac{\log_2(x)}{\log_2(b)}
Sedangkan untuk logaritma berbasis e dan berbasis 2, terdapat prosedur-prosedur yang umum, yang hanya menggunakan penjumlahan, pengurangan, pengkalian, dan pembagian.

Tidak ada komentar:

Posting Komentar